
Who Left Open the Cookie Jar?
A Comprehensive Evaluation of Third-Party Cookie Policies

Gertjan Franken
imec-DistriNet, KU Leuven

Tom Van Goethem
imec-DistriNet, KU Leuven

Wouter Joosen
imec-DistriNet, KU Leuven

Abstract

Nowadays, cookies are the most prominent mechanism
to identify and authenticate users on the Internet. Al-
though protected by the Same Origin Policy, popular
browsers include cookies in all requests, even when these
are cross-site. Unfortunately, these third-party cookies
enable both cross-site attacks and third-party tracking.
As a response to these nefarious consequences, various
countermeasures have been developed in the form of
browser extensions or even protection mechanisms that
are built directly into the browser.

In this paper, we evaluate the effectiveness of these
defense mechanisms by leveraging a framework that au-
tomatically evaluates the enforcement of the policies im-
posed to third-party requests. By applying our frame-
work, which generates a comprehensive set of test cases
covering various web mechanisms, we identify several
flaws in the policy implementations of the 7 browsers
and 46 browser extensions that were evaluated. We find
that even built-in protection mechanisms can be circum-
vented by multiple novel techniques we discover. Based
on these results, we argue that our proposed framework is
a much-needed tool to detect bypasses and evaluate solu-
tions to the exposed leaks. Finally, we analyze the origin
of the identified bypass techniques, and find that these
are due to a variety of implementation, configuration and
design flaws.

1 Introduction

Since its emergence, the Web has been continuously im-
proving to meet the evolving needs of its ever-growing
number of users. One of the first and most crucial im-
provements was the introduction of HTTP cookies [5],
which allow web developers to temporarily store infor-
mation such as website preferences or authentication to-
kens in the user’s browser. After being set, the cookies
are attached to every subsequent request to the originat-

ing domain, allowing users to remain logged in to a web-
site without having to re-enter their credentials.

Despite their significant merits, the way cookies are
implemented in most modern browsers also introduces
a variety of attacks and other unwanted behavior. More
precisely, because cookies are attached to every request,
including third-party requests, it becomes more difficult
for websites to validate the authenticity of a request.
Consequently, an attacker can trigger requests with a ma-
licious payload from the browser of an unknowing vic-
tim. Through so-called cross-site attacks, adversaries can
abuse the implicit authentication to perform malicious
actions through cross-site request forgery attacks [6,54],
or extract personal and sensitive information through
cross-site script inclusion [24] and cross-site timing at-
tacks [9, 16, 48].

Next to cross-site attacks, the inclusion of cookies in
third-party requests also allows for users to be tracked
across the various websites they visit. Researchers have
found that through the inclusion of code snippets that
trigger requests to third-party trackers, the browsing
habits of users are collected on a massive scale [2,40,53].
These trackers leverage this aggregated information for
the purpose of content personalization, e.g. on social net-
works, displaying targeted advertisements, or simply as
an asset that is monetized by selling access to the accu-
mulated data.

As a direct response to the privacy threat imposed
by third-party trackers and associated intrusive adver-
tisements, a wide variety of efforts have been made.
Most prominently is the emergence of dozens of browser
extensions that aim to thwart their users from being
tracked online. These extensions make use of a desig-
nated browser API [39] to intercept requests and either
block them or strip sensitive information such as head-
ers and cookies. Correspondingly, several browsers have
recently introduced built-in features that aim to mitigate
user tracking. For instance, Firefox in its private brows-
ing mode will by default block third-party requests that

are made to online trackers [7]. It is important to note
that the effectiveness of these anti-tracking mechanisms
fully relies on the ability to intercept or block every type
of request, as a single exception would allow trackers to
simply bypass the policies. In this paper, we show that in
the current state, built-in anti-tracking protection mech-
anisms as well as virtually every popular browser exten-
sion that relies on blocking third-party requests to either
prevent user tracking or disable intrusive advertisements,
can be bypassed by at least one technique.

Next to tracking protections, we also evaluate a re-
cently introduced and promising feature aimed at defend-
ing against cross-site attacks, namely same-site cook-
ies [51]. While cross-site attacks share the same cause
as online tracking, i.e. the inclusion of cookies on
third-party requests, their defenses are orthogonal. The
SameSite attribute on cookies can be set by a website
developer, and indicates that this cookie should only be
included with first-party requests. Consequently, when
this policy is applied correctly, same-site cookies defend
against the whole class of cross-site attacks. Similar to
the tracking defenses, the security guarantees provided
by same-site cookies stand or fall by the ability to ap-
ply its policies on every type of request. As part of our
evaluation, we discovered several instances in which the
same-site cookie policy was not correctly applied, thus
allowing an adversary to send authenticated requests re-
gardless of the lax or strict mode applied to the same-
site cookie. Although this bypass could only be used
to trigger GET requests, thereby making the exploita-
tion of CSRF vulnerabilities in websites that follow com-
mon best-practices more difficult, it does underline the
importance of a systematic evaluation to test whether
browser implementations consistently follow the policies
proposed in the specification.

In this paper, we present the first extensive evalua-
tion of policies applied to third-party cookies, whether
for the purpose of thwarting cross-site attacks or pre-
venting third-party tracking. This evaluation is driven
by a framework that generates a wide-range of test cases
encompassing all methods that can be used to trigger
a third-party request in various constructs. Our frame-
work can be used to launch a wide variety of differ-
ent browsers, with or without extensions, and analyze,
through an intercepting proxy, whether the observed be-
havior matches the one expected by the browser instance.
We applied this framework to perform an analysis of 7
browsers and 46 browser extensions, and found that for
virtually every browser and extension the imposed pol-
icy can be bypassed. The sources for these bypasses can
be traced back to a variety of implementation, configu-
ration and design flaws. Further, our crawl on the Alexa
top 10,000 did not identify any use of the discovered by-
passes in the wild, indicating that these are novel.

Our main contributions are the following:

• We developed a framework with the intent to au-
tomatically detect bypasses of third-party request
and cookie policies. This framework is applicable
to all modern browsers, even in combination with a
browser extension or certain browser settings.

• By applying the framework to 7 browsers, 31 ad
blocking and 15 anti-tracking extensions, we found
various ways in which countermeasures against
cookie leaking can be bypassed.

• We performed a crawl on the Alexa top 10,000, vis-
iting 160,059 web pages, to inspect if any of these
bypasses were already being used on the Web. In or-
der to estimate the completeness of our framework,
we analyzed the DNS records spawned by each web
page.

• Finally, we propose solutions to rectify the imple-
mentations of existing policies based on the de-
tected bypasses.

2 Background

A fundamental trait of the modern web is that web-
sites can include content from other domains by simply
referring to it. The browser will fetch the referenced
third-party content by sending a separate request, as
shown in Figure 1. The web page of first-party.com
contains a reference to an image that is hosted on
third-party.com. In this scenario, the user first in-
structs his browser to visit this web page, e.g. by en-
tering the address in the address bar or by clicking
on a link. This will initiate a request to the web
page http://first-party.com/, and a subsequent
response will be received by the browser (1). While pars-
ing the web page, the user’s browser comes across the
reference to https://third-party.com and fetches
the associated resource by sending a separate request
(2). The browser will include a Cookie header [5] to
the request if these were previously set for that domain
(using the Set-Cookie header in a response). This ap-
plies to both the request to first-party.com as well as
third-party.com. In this scenario, we would name the
cookies attached to the latter request third-party cookies,
as this is a request to a different domain than the includ-
ing document.

2.1 Cross-site attacks

Because browsers will, by default, attach cookies to any
request, including third-party requests, an adversary is

Figure 1: Example of a cross-site request.

able create a web page that constructs malicious pay-
loads which will be sent using the victim’s authentica-
tion. Through these so-called cross-site attacks, attack-
ers can trigger state changes on vulnerable websites or
extract sensitive information.

One of the most well-known cross-site attacks is cross-
site request forgery (CSRF). CSRF attacks aim to per-
form undesirable actions, e.g. transfer funds to the ac-
count of the adversary, on behalf of the victim who is
authenticated at the vulnerable website. Typically, this
will be done by triggering a POST request to the tar-
geted website, as it is considered best-practice to pre-
vent GET requests from having any state-changing ef-
fect [15]. Although websites of large organizations such
as The New York Times, ING, MetaFilter and YouTube
have been found to be vulnerable to CSRF attacks in
the past [54], the increased awareness among web devel-
opers and countermeasures integrated in popular frame-
works resulted in a drastic decrease in vulnerable web-
sites. According to the OWASP Top Ten Project, only
5% of current websites were found to be vulnerable, thus
leading to the exclusion of CSRF from the list of the
ten most critical web application security risks. Effective
countermeasures, such as requiring an unguessable token
in requests, have been known for a long period [6, 54],
and have been extensively applied [47].

In contrast to CSRF, cross-site script inclusion (XSSI)
and cross-site timing attacks aim to derive sensitive in-
formation. XSSI attacks bypass the Same-Origin Policy
(SOP) in an attempt to obtain information linked to the
authenticated user account [24]. Timing attacks, on the
other hand, try to construct sensitive data by observing
side-channel leaks [9, 16, 48].

A recently proposed mechanism called same-site
cookies aims to protect against the whole class of cross-
site attacks [51]. Same-site cookies are generic cookies
with an additional attribute named SameSite. Similar to
other cookie attributes, the SameSite attribute is deter-
mined by the website that sets the cookie. This attribute

can be given one of two values: lax or strict. When
the value is set to lax, the cookie may only be included
in cross-site GET requests that are top-level (i.e. the
URL in the address bar changes due to the request). An
exception to this is a cross-site request initiated by Pre-
render functionality [46], in which this cookie is included
anyway. When the attribute value is set to strict, the
cookie may never be included in any cross-site requests.

At the time of writing, same-site cookies are supported
by Chrome, Opera, Firefox and Edge [8, 27, 50]. Same-
site cookies are backwards compatible; browsers that do
not offer support will just treat same-site cookies as reg-
ular cookies. This, combined with the fact that same-
site cookies are mainly intended as an in-depth defense
mechanism, encourages web developers to still employ
traditional defenses such as CSRF tokens to thwart cross-
site attacks. While the adoption of same-site cookies is
still relatively small, with only a few popular websites
implementing them [42], the fact that they can mitigate
a whole class of attacks makes them a very promising
defense mechanism.

2.2 Third-party tracking

Internet users can be tracked for a variety of purposes, of-
ten with economic motives as the driving force behind it,
e.g. advertising, user experience or data auctioning [26].
One way of employing online tracking is through em-
bedded advertisements, which include tracking scripts to
learn more about the user’s interests and personalize the
advertisements based on this information. Alternatively,
website administrators may include scripts from analytic
services, which gather insights in how users interact with
their website, provided that this service can also use the
collected data for its own purposes. Moreover, websites
may embed functionality of a social platform through
which users can engage with each other. Because the
resource containing embedded functionality is requested
upon each page visit, the social platform can track which
websites their users visit.

The main technique that is used to track users across
different websites is by means of third-party cookies.
More precisely, a script that is included on a wide range
of websites, e.g. to display advertisements, triggers a
request to the server of the tracker. Subsequently, the
tracker checks whether this request contains a cookie,
and either associates the triggered request with the pro-
file of the user, or creates a new profile and responds
with a Set-Cookie header containing the newly gener-
ated cookie. In the latter case, the user’s browser will
associate the cookie with the site of the tracker, and will
include it in all subsequent requests to it. This allows the
tracker to follow users across all websites that include a
script that initiates the request to the tracker.

Because of the raised awareness of online tracking
among the general public, many users delete cookies on
a regular basis [12], which results in a seemingly new
user profile from the tracker’s perspective. As a reac-
tion, some online trackers have resorted to more exten-
sive tracking methods, such as respawning cookies via
Flash [44] and other web mechanisms [4], and browser
fingerprinting [2,13,44,52]. As the evaluation presented
in this paper mainly focuses on cookie policies imposed
by browsers or browser extensions, our main focus is on
“traditional” user tracking by means of third-party cook-
ies. However, because the more recent tracking mecha-
nisms also rely on sending requests to the tracker, e.g.
containing the browser fingerprint, these are also sub-
jected to the browser and extension policies. Bypasses of
these policies can also be leveraged by trackers to smug-
gle their requests past the protection mechanisms.

3 Framework

Despite all standardization efforts, browser implemen-
tations may exhibit inconsistent behavior or even devi-
ate from the standard. Additionally, web features from
different standards may interfere with each other, caus-
ing unintended side-effects, which may affect the secu-
rity and privacy guarantees. Despite prior efforts to ver-
ify these guarantees [22, 25], the real-world prevalence
of inconsistencies remains hard to measure as modern
browsers consist of millions of lines of code, or may be
proprietary, preventing researchers access to their source
code. In this paper, we evaluate the validity of constraints
that are imposed on stateful third-party requests, either
by browsers themselves or by browser extensions. Be-
cause of the limitations of source-code analysis, we de-
sign a framework that considers browsers, in various con-
figurations, as a black box. This section outlines the de-
sign choices and implementation of this framework. The
source code of our framework has been made publicly
available.1

3.1 Framework design

The goal of our framework is to detect techniques that
can be used to circumvent policies that strip cookies
from cross-site requests, or that try to block these re-
quests completely. To achieve this, our framework con-
sists of various components ranging from browser con-
trol to test-case generation. These components and their
interactions are depicted in Figure 2, and discussed in the
following sections.

1https://github.com/DistriNet/xsr-framework

3.1.1 Browser manipulation

The framework is driven by the Framework Manager
component, which is provided with information on
which browsers and browser extensions need to be an-
alyzed. The manager instructs the Browser Control
component to create a specific browser instance with
the predefined settings. The controller will then in-
struct the browser instance to visit one of the gener-
ated test-cases by leveraging browser-specific Selenium
WebDriver2 implementations. Browsers that do not have
Selenium support, are controlled by manually configur-
ing a browser profile and are then launched through the
command-line.

3.1.2 Test environment

Prior to executing all test scenarios, the browser instance
is first prepared. More specifically, on the target domain,
i.e. the domain for which the test cases will try to initiate
an illegitimate cross-site request, we install several cook-
ies. Each of these cookies has different attributes: none,
which does not impose any restrictions on the cookies,
HttpOnly, which restricts the cookie from being ac-
cessed by client-side scripts, and Secure, which only al-
lows this cookie to be sent over an encrypted connection.
Throughout the remainder of the text, we refer to cook-
ies as cookies with any one of these attributes, unless ex-
plicitly stated otherwise. Furthermore, for browsers that
support it, we installed two cookies with the SameSite

attribute: one with the value set to lax, and one set to
strict. Finally, we instruct the browser to route all re-
quests through a proxy, allowing us to capture and ana-
lyze the specific requests that were initiated as part of a
test.

3.2 Test-case generation
Because of the abundance of features and APIs imple-
mented in modern browsers, there exist a very large num-
ber of techniques that can be leveraged to trigger a cross-
site request. For each such technique, our framework
generates a web page containing a relevant test case.

3.2.1 Request-initiating mechanisms

As there exists no comprehensive list of all feature that
may initiate a request, we leveraged the test suites from
popular browser engines, such as WebKit, Firefox, as
well as the web-platform-tests project by W3C3 to com-
pose an extensive list of different request methods. In
addition, we analyzed several browser specifications to
verify the completeness of this list. What follows is a

2https://www.seleniumhq.org/
3https://github.com/w3c/web-platform-tests

https://github.com/DistriNet/xsr-framework
https://www.seleniumhq.org/
https://github.com/w3c/web-platform-tests

Figure 2: Design of the framework that we used to detect bypasses of imposed cross-site request policies.

summary of the mechanisms we used, subdivided into
seven different categories.

HTML tags The first group of request mechanisms
consists of HTML elements that can refer to an external
resource, such as , <iframe> or <script> tags.
Upon parsing the HTML document, the browser will ini-
tiate requests to fetch the referred resources. As a basis,
we used the HTTPLeaks project4, which contains a list
of all possible ways HTML elements can leak HTTP re-
quests. This list was combined with techniques related
to features that were recently introduced, and account for
196 unique methods. It should be noted that all HTML-
based requests only initiate GET requests.

Response headers Response headers allow websites
to include extra information alongside the resource that
is served. We found that two classes of response headers
may trigger an additional request, either as soon as the
browser receives the headers or upon certain events. The
first class of such response headers are Link headers,
which indicate relationships between web resources [38].
The header can be used to improve page-load speeds
by signaling to the browser which resources, such as
stylesheets and associated web pages, can proactively be
fetched. In most cases, the browser will request the ref-
erenced resources through a GET request.

The other class of response headers that initi-
ate new requests are related to Content Security
Policy (CSP) [1]. More precisely, through the
Content-Security-Policy header5, a website can,
among other things, indicate which resources are allowed

4https://github.com/cure53/HTTPLeaks
5There also exists experimental CSP headers such as X-Content-

Security-Policy and X-WebKit-CSP, as well as a report-only
header.

to be loaded. Through the report-uri directive, web-
sites can indicate that any violations of this policy should
be reported, via a POST request to the provided URL.
Recently, another directive named report-to has been
proposed, which allows reporting through the Reporting
API [19]. As this directive and API are not yet sup-
ported by any browser, we excluded them from our anal-
ysis. Nevertheless, they are a prominent example of the
continuously evolving browser ecosystem, and highlight
the importance of analyzing the unexpected changes new
features might bring along.

Redirects Top-level redirects are often not regarded as
cross-site requests, because stripping cookies from them
would cause breakage of many existing websites. Nev-
ertheless, we included them in our evaluation for the
sake of completeness, because various scenarios exist in
which top-level redirects can be abused. For instance,
a tracker trying to bypass browser mitigations can listen
for the blur event on the window element, which indi-
cates that the user switched tabs. When receiving this
event, the tracker could trigger a redirect to its own web-
site in the background tab, which would capture infor-
mation from the user and afterwards redirect him back
to the original web page. In our framework, we evaluate
redirection mechanisms through the Location response
header, via the <meta> tag, setting the location.href
property and automatically submitting forms.

JavaScript Browsers offer various JavaScript APIs
that can be used to send requests. For instance, the XML-
HttpRequest (XHR) API can be used to asynchronously
send requests to any web server [33]. More recently, the
Fetch API was introduced, which offers a similar func-
tionality and intends to replace XHR [30]. Similarly, the
Beacon API can be used to asynchronously send POST
requests, and is typically used to transmit analytic data as

https://github.com/cure53/HTTPLeaks

it does this in a non-blocking manner and the browser en-
sures the request is sent before the page is unloaded [29].
Finally, there are several browser features that allow web
developers to set up nonstandard HTTP connections. For
instance, the WebSocket API can be used to open an
interactive communication session between the browser
and the server [32]. Also, the EventSource API can be
used to open a unidirectional persistent connection to a
web server, allowing the server to send updates to the
user [34]. The latter two mechanisms are initiated using
a GET request.

PDF JavaScript In addition to statically showing in-
formation, PDFs also have dynamic features that are en-
abled through JavaScript code embedded within the PDF
file. For example, through the JavaScript code it is possi-
ble to trigger POST requests by sending form input data.
The capabilities of the PDF and the JavaScript embed-
ded within it, depend on the viewer that is used. Next
to the system-specific viewer, some browsers also im-
plement their own PDF viewer, which shows the con-
tents in a frame. The viewer used by Chrome and Opera,
PDFium [18], is implemented as a browser extension and
does support sending requests. To our knowledge, this is
not the case for Firefox’ PDF.js library [17], as we did
not manage to simulate this, nor did we find any source
to confirm this.

AppCache API Although the AppCache API has been
deprecated, it is still supported by most browsers [35].
This mechanism can be used to cache specific resources,
such that the browser can still serve them when the net-
work connection is lost. Web developers can specify
the pages that should be cached through a manifest file.
When the browser visits a page that refers to this file,
the specified resources, which may be hosted at a differ-
ent domain, will be requested through a GET request and
subsequently cached.

Service Worker API Service workers can be seen as
a replacement for the deprecated AppCache API. They
function as event-driven workers that can be registered
by web pages. After the registration process, all requests
will pass through the worker, which can respond with a
newly fetched resource or serve one from the cache. Next
to fetching the requested resources, service workers can
also leverage most6 browser APIs to initiate additional
requests.

6XMLHttpRequest is not supported in service workers.

3.2.2 Test compositions

The most straightforward way to initiate a new request is
to include the mechanism directly in the top-level frame.
For example, for the purpose of tracking, web developers
typically include a reference to a script or image hosted
at the tracker’s server. However, because their top-
level document can include different documents through
frames, it is possible to create more advanced test com-
positions. In our framework, we tested 8 test-case com-
positions, where resources from different domains were
included in each other, either through an <iframe> or by
specific methods, such as importScripts in JavaScript.
As we did not detect any behavior related to the test-case
compositions, we omit the details from the paper. We re-
fer to Appendix A for an overview of the different com-
positions that were used.

3.3 Supported browser instances
In order to generalize our results, and detect inconsis-
tencies we evaluated a wide variety of browser config-
urations. These configurations range over the different
browsers and their extensions, considering all the rele-
vant settings.

3.3.1 Web browsers

The primary goal of our evaluation was to analyze
browsers for which inconsistencies and bypasses would
have the largest impact. On the one hand, we included
the most popular and widely used browsers: Chrome,
Opera, Firefox, Safari and Edge. On the other hand, we
also incorporated browsers that are specifically targeted
towards privacy-aware users, and thus impose different
rules on authenticated third-party requests. For instance,
Tor Browser makes use of double-keyed cookies: instead
of associating a cookie with a single domain, the cookies
are associated with both the domain of the top-level doc-
ument as well as domain that set the cookie. For exam-
ple, when siteA.com includes a resource from siteB.com
that sets a cookie, this cookie will not be included when
siteC.com would include a resource from siteB.com. Fi-
nally, we also included the Cliqz browser, which has in-
tegrated privacy protection that is enforced by blocking
requests to trackers.

3.3.2 Browser settings

Most modern web browsers provide an option to block
third-party cookies. While this can be considered as a
very robust protection against both cross-site attacks and
third-party tracking, it may also interfere with the essen-
tial functionality for websites that rely on cross-site com-
munication. Moreover, some browsers provide built-in

functionality to prevent requests from leaking privacy-
sensitive information. For instance, Opera offers a built-
in ad blocker that is based on blacklists. By default,
the anti-tracking and ad blocking lists from EasyList and
EasyPrivacy are used, but users are able to also define
custom ones. In our framework, we only considered
the default setting of the built-in protection. Another
browser that provides built-in tracking protection is Fire-
fox. Here, the mechanism is enabled by default when
browsing in “Private mode”, and also leverages publicly
available and curated blacklists [23].

Recently, Safari introduced its own built-in tracking
protection, which uses machine learning algorithms to
determine the blacklist [49]. Requests sent to websites
on this blacklist are subjected to cookie partitioning and
other measures to prevent the user from being tracked.
For example, cookies will only be included in a cross-site
request when there was a first-party interaction within the
last 24 hours with the associated domain. Although we
were unable to infer the rules of these machine learning
algorithms, we still subjected this built-in option to our
framework in order to be complete.

3.3.3 Browser extensions

Next to built-in tracking prevention, users may also re-
sort to extensions to prevent their browsing behavior and
personal information from leaking to third parties. As
these extensions may also impose restrictions on how
requests are sent, and whether cookies should be sent
along in third-party requests, we also included various
anti-tracking and ad blocking extensions. Due to the ex-
cessive amount of such extensions, we were unable to
test all. Instead, we made a selection based on the ex-
tension’s popularity, i.e. the total number of downloads
or active users, as reported by the extension store. In to-
tal, we evaluated 46 different extensions for the 4 most
popular browsers (Chrome, Opera, Firefox and Edge).
An overview of all extensions that were evaluated can be
found in Appendix B.

Most browsers’ anti-tracking and ad blocking exten-
sions share a common functionality. By making use of
the WebRequest API [31], extensions can inspect all re-
quests that are initiated by the browser. The extension
can then determine how the request should be handled:
either it is passed through unmodified, or cookies are re-
moved from the request, or the request is blocked en-
tirely. This decision is typically made based on infor-
mation about the requests, namely whether it is sent in a
third-party context, which element initiated it, and most
importantly, whether it should be blocked according to
the block list that is used. It should be noted that for the
browser extension to work correctly, it should be able to
intercept all requests in order to provide the promised

guarantees. This is exactly what we evaluate by means
of our framework.

4 Results

By leveraging our framework that was introduced in Sec-
tion 3, we evaluated whether it was possible to bypass
the policies imposed on third-party requests by either
browsers or one of their extensions. The results are sum-
marized in Table 1, Table 2, and Table 3, and will be
discussed in more detail in the remainder of this section.
These three tables follow a similar structure. For each
category of request-triggering mechanism, we indicate
whether a cookie-bearing request was made for at least
one technique within this category using a full circle ().
A half circle (G#) indicates that for at least one technique
within that category a request was made, but that in all
cases all cookies were omitted from the request. Finally,
an empty circle (#) indicates that none of the techniques
of that category managed to initiate a request. Note that
these results only reflect regular, HttpOnly and Secure

cookies. Same-site cookies are discussed in Section 4.3.
We refer to a more detailed explanation about the bug re-
porting in Appendix C through the indicated [bug#] tags.
For a more detailed view of detected leaks and leaks for
future browser and extension versions, we kindly direct
you to our website.7

4.1 Web browsers and built-in protection
The results of applying our framework to the 7 evalu-
ated browsers, both with their default settings as with the
built-in measures that aim to prevent online tracking en-
abled, are outlined in Table 1. All tests are performed
on the browser versions mentioned in this table, unless
stated otherwise. In general, it can be seen that differ-
ences in browser implementations, often lead to differ-
ences in results. The most relevant results are discussed
in more detail in the following sections.

4.1.1 Default settings

Under default configuration, nearly all of the most
widely used browsers send along cookies with all third-
party requests. Exceptionally, due to enabling its track-
ing protection by default, Safari only does so for redi-
rects. We will discuss this further in Section 4.1.3 with
the other evaluated built-in options.

Besides Safari, the privacy-oriented browsers also
generally perform better in this regard: with a few ex-
ceptions, both Cliqz and Tor Browser manage to exclude
cookies from all third-party requests. Most likely be-
cause redirects are not considered as cross-site (as the

7https://WhoLeftOpenTheCookieJar.com

https://WhoLeftOpenTheCookieJar.com

domain of the document changes to that of the page it
is redirected to), cookies are not excluded for redirects.
However, as we outlined in Section 3.2, this technique
could still be used to track users under certain conditions.

<img src="data:image/svg+xml ,

<svg>

<image xlink:href= 'https: //
third-party.com/leak'>
</image>

</svg>">

Listing 1: Bypass technique found for Cliqz

Another interesting finding is that in the HTML cate-
gory, we found that for several mechanisms Cliqz would
still send along cookies with the third-party request. An
example of such a mechanism is shown in Listing 1.
Here an element included an SVG via the data:
URL. Possibly, this caused a confusion in the browser
engine which prevented the cookies from being stripped.

4.1.2 Third-party cookie blocking

In addition to the default settings, we also evaluated
browsers when these were instructed to block all third-
party cookies. For Tor Browser, this feature was already
enabled by default. Consequently, Table 1 contains no
results for Tor Browser under these settings.

Similar to what could be seen from the results of
the privacy-oriented browsers, top-level redirects are not
considered as third-party, and thus do not prevent a
cookie to be sent along with the request. One of the
most surprising results is that the browsers that use the
PDFium reader to render PDFs directly in the browser
(Google Chrome and Opera), would still include cookies
for third-party requests that are initiated from JavaScript
embedded within PDFs [bug1]. Because PDFs can be
included in iframes, and thus made invisible to the end
user, and because it can be used to send authenticated
POST requests, this bypass technique could be used to
track users or perform cross-site attacks without raising
the attention of the victim. This violates the expecta-
tions of the victim, who presumed no third-party cook-
ies could be included, which should safeguard him com-
pletely from cross-site attacks. At the time of writing,
PDFium only provides support for sending requests, but
does not capture any information about the response. As
such, XSSI and cross-site timing attacks are currently not
possible. However, as indicated in the source code8, this
functionality is planned to be added.

Because the option to block third-party cookies was
removed from the latest Safari, we had to use a previous
version (Safari 10). We found that setting cookies in a

8https://chromium.googlesource.com/chromium/src/+/

66.0.3343.2/pdf/out_of_process_instance.cc#1437

third-party context was successfully blocked. However,
cookies - set in a first-party context - were still included
in cross-site requests [bug2]. On top of that, we also
found that Safari’s option to block all cookies suffered
from somewhat the same problem. Likewise, it managed
to block the setting of third-party cookies, but cookies
that were set before enabling this option were still in-
cluded in cross-site requests. This problem was solved
in Safari 11 by deleting all cookies upon enabling the
option to block all cookies.

For Edge, we found that, surprisingly, the option to
block third-party cookies had no effect: all cookies that
were sent in the instance with default settings, were also
sent in the instance with custom settings [bug3]. We be-
lieve that this may have been the result of a regression
bug in the browser, which disabled support for this fea-
ture but did not remove the setting.

4.1.3 Built-in protection mechanisms

In total, we evaluated three built-in mechanisms that
protect against tracking (Firefox’ and Safari’s tracking
protection mode), or block advertisements (Opera’s ad
blocker). For Firefox and Opera, our framework man-
aged to detect several bypasses. Although Opera’s ad
blocker managed to block all requests that were trig-
gered by headers or by JavaScript embedded in PDFs,
in all other categories cookie-bearing requests were
made [bug4]. Although it did manage to block certain
requests, e.g. for HTML tags, out of the 58 requests
that were sent in the regular browsing mode, 6 were not
blocked. These 6 bypass techniques spanned different
browser mechanisms (CSS, SVG, <input> and video),
so it is unclear why these are treated differently.

For Firefox, we observed comparable results: al-
though many requests were blocked (e.g. for the HTML
category, 46 out of 51 requests were blocked), for each
applicable category there was at least one technique that
could circumvent the tracking protection [bug5]. By an-
alyzing the Firefox source code, we traced the cause of
these bypasses back to inconsistencies in the implemen-
tation. We discuss this in more detail in Section 6.1.

In contrast to the former built-in options, Safari’s In-
telligent Tracking Prevention managed to mitigate all
third-party cookies to a tracking domain, apart from redi-
rects. However, we found that future completeness can
be undermined by having this option disabled for even a
short interval. Third-party cookies set in this interval by
tracking domains, which otherwise would have been pre-
vented, will still be included in cross-site requests after
enabling the option again, identical to the results when
the option is disabled. Luckily, this option is enabled
by default, so future completeness can only be affected
through explicit disabling by the user. As we already

https://chromium.googlesource.com/chromium/src/+/66.0.3343.2/pdf/out_of_process_instance.cc#1437
https://chromium.googlesource.com/chromium/src/+/66.0.3343.2/pdf/out_of_process_instance.cc#1437

AppCache HTML Headers Redirects PDF JS JavaScript SW

Chrome 63
- Block third-party cookies G# G# G# G# G#

Opera 51
- Block third-party cookies∗ G# G# G# G# G#
- Ad Blocker # #

Firefox 57 #
- Block third-party cookies G# G# G# # G# G#
- Tracking Protection #

Safari 11 #† G# # # G# N/A
- No Intelligent Tracking Prevention † # # N/A
- Block third-party cookies‡ † G# # N/A

Edge 40 G# # N/A
- Block third-party cookies G# # N/A

Cliqz 1.17∗ G# G# # G# G#
- Block third-party cookies G# G# G# # G# G#

Tor Browser 7 # G# G# # G# N/A

 : request with cookies G#: request without cookies #: no request
∗ Secure cookies were omitted in all requests.
† Safari does not permit cross-domain caching over https (only over http).
‡ Safari 10.1.2

Table 1: Results from the analysis of browsers and their built-in security and privacy countermeasures.

mentioned in Section 3.3.2, third-party cookies will be
included if first-party interaction has been occurred in the
last 24 hours. This can be provoked by redirects or pop-
ups to the tracking domain, although pop-ups are blocked
by default.

4.2 Browser Extensions

In total, we evaluated 31 ad blocking and 15 tracking pro-
tection extensions. The results are summarized in Table 2
and Table 3 respectively. Due to space constraints, we
aggregated extensions in different sets when these shared
the same category-level results. Note that within a single
set, extensions may still exhibit different results within
one category. An overview of all browser extensions that
were considered can be found in Appendix B. Guided by
the resulting data, we found several common causes for
the discovered bypasses.

Considering the results of all Chrome- and Opera-
based extensions, it is clear that none of these managed
to block the cookie-bearing third-party request when the
request is initiated by JavaScript code embedded within
a PDF. Although this result is similar to the results we
observed when the browser was instructed to block all
third-party cookies, the specific cause slightly differs. As
the requests are sent from within a browser extension,
the browser does not regard it as a cross-site request,
and thus does not strip its cookies in the case when the
“block third-party cookies” setting is enabled. However,

another issue arises when a browser extension wants to
block these requests: the WebExtension API does not
allow an extension to intercept traffic from another ex-
tension. Consequently, this issue can not be mitigated
by the anti-tracking and ad blocking extension develop-
ers [bug6].

Only few browser extensions correctly block cross-site
requests initiated through the AppCache API. By analyz-
ing the source code of the bypassed extensions, we found
that these shared the same root cause. Although the lis-
tener for the onBeforeRequest event was always able
to intercept the request, the extensions verified the pro-
vided tab identifier. However, for requests that originated
from AppCache, this identifier was set to -1, a value
that was not expected by the extension, as it may also
be related to inherent browser functionality such as ad-
dress bar autocompletion. As extension developers try to
prevent interfering with regular browsing behavior, most
extensions performed no actions on requests that caused
these unexpected parameters [bug8].

Furthermore, we found that for requests initiated from
service workers bypasses were made possible due to the
same reasons. However, in this case Firefox-based exten-
sions did manage to block the third-party requests. We
found that this is because Firefox assigns the tab iden-
tifier to the tab on which the service worker was orig-
inally registered. As a result, from the perspective of
the browser extension this seemed as a regular request,
thus allowing the normal policies to be applied. In to-

tal, we found that 26 browser extension policies could be
bypassed with the AppCache technique, and 20 through
service workers.

Contrasting to extensions of other browsers, almost
every Firefox-based extension could be bypassed in
the HTML category. In most cases, this was caused
by a <link> element, which rel attribute was set to
"shortcut icon". By further analyzing this case, we
traced back the cause of this issue to an implementa-
tion bug in the WebExtension API. We found that the
onBeforeRequest event did not trigger for requests
originating from this link element [bug7]. Although
abusing this bug may not be straightforward, as it is
only sent when a web page is visited for the first time,
it does indicate that browsers exhibit small inconsisten-
cies, which may often lead to unintended behavior.

In the JavaScript category, we found that most exten-
sions could be bypassed with at least one technique: for
the tracking extensions, only a single extension managed
to block requests initiated by JavaScript. Most preva-
lently, a bypass was made possible because of Web-
Socket connections. We found that a common mistake
extension developers made, was in the registration on
the onBeforeRequest event. The bypassed extensions
set the filter value to [http://*/*, https://*/*],
which would allow intercepting all HTTP requests, but
not WebSockets, which use the ws:// or wss:// proto-
col [bug8]. Hence, to be able to intercept all requests, the
filter should include these protocols or use <all urls>.
Of course, the configuration of the manifest file should
be updated accordingly.

In summary, we found that for every built-in browser
protection as well as for every anti-tracking and ad block-
ing browser extension, there exists at least one technique
that can bypass the imposed policies. Moreover, we
found that most instances could be bypassed by using
different techniques, which have different causes.

4.3 Same-site cookie

Through the tests we performed to evaluate the validity
of same-site cookies, we detected incorrect behaviors for
Chrome, Opera and Edge. No bugs were found for Fire-
fox’ implementation of this policy.

For Chrome and Opera, the incorrect behavior was
caused by the prerendering functionality [46]. By in-
cluding <link rel="prerender" href="..."> on a
web page, the visitor’s browser will initiate a request to
the referenced web page. If this web page resides on an-
other domain, the resulting cross-site request will include
all same-site cookies [bug9]. This bypasses the same-site
cookie policy as defined by the Internet Draft; only same-
site cookies in lax mode are allowed to be included.

For Edge (versions 16 and 17, which support same-

site cookies), we detected similar incorrect behaviors, al-
though caused by different functionalities [bug10]. Here,
<embed> and <object> tags can be leveraged to send
cross-site requests that include all same-site cookies, by
pointing to another domain using the src and data at-
tributes respectively. This also holds for requests that
are sent for opening a cross-site WebSocket connec-
tion through the WebSocket API. No same-site cook-
ies should be included at all in these requests accord-
ing to the Internet Draft. On top of that, we also found
that same-site cookies in strict mode are included in
requests initiated by a variety of redirects, while this
is only allowed for same-site cookies in lax mode.
This was detected for redirects through the <meta>

tag, location.href property and Location response
header.

5 Real-world Abuse

Tracking companies and advertisers have been reported
to circumvent ad blockers and anti-tracking extensions.
For example, due to limitations of the WebExtension
API, Pornhub managed to circumvent all ad blocking ex-
tensions by levering WebSockets [10]. As a response,
several popular ad blocking extensions such as Adblock
Plus and uBlock implemented a mitigation that would
override the WebSocket prototype. Soon after, this mit-
igation was again circumvented by Pornhub, who this
time leveraged WebWorkers.9 Only when support for
intercepting WebSocket connections was added to the
WebExtension API, browser extensions managed to pre-
vent Pornhub’s bypasses. However, as our results show,
not all browser extensions have adopted these defenses.
Motivated by the seemingly strong incentives of certain
trackers to circumvent request and cookie policies im-
posed by browser extensions, we performed an experi-
ment to analyze whether any of the bypass techniques
introduced in this paper are actively being used in the
wild.

5.1 Use of bypass methods
We performed a crawl of the 10,000 most popular web-
sites according to Alexa. For each website, we visited up
to 20 pages with a Headless Chrome instance (version
64.0.3282.119, on Ubuntu 16.04), and analyzed all re-
quests that were initiated by one of the new bypass tech-
niques we reported in Section 4. In total, 160,059 web
pages were visited by our crawler, and on each page we
analyzed all third-party requests.

Next, we determined whether a cross-site request
should be classified as tracking or advertising. To this

9https://github.com/gorhill/uBlock/issues/1936

https://github.com/gorhill/uBlock/issues/1936

AppCache HTML Headers Redirect PDF JS JavaScript SW

Chrome

SET A1 (3/14)
SET A2 (3/14) # G#
SET A3 (1/14) # #
SET A4 (1/14) # # #
SET A5 (1/14) # # #
SET A6 (3/14) # # # #
SET A7 (2/14) # # # # #

Opera

SET A8 (2/9)
SET A9 (1/9) # G#
SET A10 (2/9) # #
SET A11 (1/9) # # #
SET A12 (1/9) # # #
SET A13 (1/9) # # # #
SET A14 (1/9) # # # # #

Firefox

SET A15 (2/5) G# # #
SET A16 (1/5) # # # #
SET A17 (1/5) # # # # #
SET A18 (1/5) # # # # #

Edge

SET A19 (1/4) G# # N/A
SET A20 (1/4) # # # N/A
SET A21 (1/4) # # # N/A
SET A22 (1/4) # # # # N/A

 : request with cookies G#: request without cookies #: no request

Table 2: Results from the analysis of ad blocking extensions per browser.

purpose, we used the EasyList and EasyPrivacy lists10

which contain regular expressions used by various pop-
ular browser extensions to determine whether requests
should be blocked. In Table 4, we show the number of
unique tracking or advertising domains, that make use
of one of the bypass techniques that we found to be most
successful. We only count the second-level domain name
of the tracker or advertiser to whom the request was sent.

To evaluate whether the advertising or tracking host
leveraged one of the techniques to purposely circumvent
browser extensions, we visited the web pages on which
these trackers or advertisers were included. For each
page visit, we enabled the browser extension that may be
bypassed with the detected technique. We found that all
uses of the methods were legitimate, and the requests to
the trackers and advertisers were never initiated because
either the script or frame containing the bypass function-
ality was preemptively blocked. Although we did not en-
counter any intentional abuse in the 10,000 websites we
analyzed, it is possible that trackers may actively try to
avoid detection, for instance by only triggering requests
upon human interaction. Moreover, as there exists a very
wide spectrum of advertisers and trackers, some of these
may not have been present in our dataset.

5.2 Evaluating unknown techniques
In order to evaluate whether any bypass technique was
used that was not detected by our framework, we com-

10https://easylist.to/

pared the DNS traffic generated by every of the 160,059
visited web pages with the requests that we could detect
from each visit. More precisely, we ran every browser in-
stance in a separate Linux namespace and used tcpdump
to capture all DNS requests the browser generated. Next,
we aggregated all DNS requests that could not be traced
back to a captured request and used an aggregated list11

to mark those directed towards trackers and advertisers.
These DNS requests could be indicative of a bypass tech-
nique we were previously unaware of.

The preliminary analysis of this data indicated that
4,701 web pages triggered DNS requests for which we
did not capture any HTTP request. However, we found
that in most cases new resources were still being loaded
when we closed the web page (15 seconds after open-
ing it). We re-evaluated these web pages but now al-
lowed the browser 120 seconds to finish loading all re-
sources. This resulted in 865 web pages that triggered a
non-corresponding DNS request to a total of 77 different
hosts. A manual analysis of these showed that the vast
majority was due to DNS prefetching and the remainder
was still caused by requests that were interrupted when
closing the browser. These results indicate the complete-
ness of our framework, as we did not find any bypass
technique that our framework was unable to detect.

11https://github.com/notracking/hosts-blocklists

https://easylist.to/
https://github.com/notracking/hosts-blocklists

AppCache HTML Headers Redirect PDF JS JavaScript SW

Chrome

SET B1 (1/6)
SET B2 (1/6) #
SET B3 (3/6) # #
SET B4 (1/6) # # # #

Opera
SET B5 (1/4)
SET B6 (2/4) # #
SET B7 (1/4) # # #

Firefox

SET B8 (1/4) #
SET B9 (1/4) # # #
SET B10 (1/4) # # # #
SET B11 (1/4) G# G# G# #

Edge SET B12 (1/1) # # N/A

 : request with cookies G#: request without cookies #: no request

Table 3: Results from the analysis of tracking protection extensions per browser.

Category Technique Tracking
domains

Advertising
domains

AppCache CACHE: 0 1

Header
Link: <url>; rel=next 0 0

Link: <url>; rel=prefetch 0 1

CSP: report-uri: url 8 1

JS
sendBeacon(url) 56 18

new WebSocket(url) 27 7

HTML
<link rel="shortcut icon" 4 10

<link rel=apple-touch-icon 0 2

 0 3

Table 4: Unique number of tracking or advertising do-
mains that make use of one of the potential bypass tech-
niques

6 Discussion

As we have shown in Section 4, through our frame-
work, which evaluated several browsers and browser ex-
tensions in various configurations, we uncovered numer-
ous instances where an authenticated third-party request
could circumvent the imposed restrictions. We found
that this unintended behavior can be traced back to sev-
eral factors, which can be classified as implementation
errors, misconfiguration and design flaws. In this sec-
tion, we discuss which measures can be taken to remedy
the discovered circumventions.

6.1 Browser implementations

Most of the browsers that we evaluated have built-in sup-
port for suppressing cookies of third-party requests. Our
results show that only the Gecko-based browsers (Fire-
fox, Cliqz and Tor Browser) manage to do this success-
fully. Surprisingly, we found that the blocking of third-
party cookies feature in Edge had no effect. We believe
that this is due to an oversight from the browser develop-
ers or a regression bug introduced when new functional-
ity was added.

For the Chromium-based browsers (Google Chrome
and Opera), we found that because of the built-in PDF
reader, an adversary or tracker can still initiate authen-
ticated requests to third-parties. Because the request is
triggered from within the extension, different directives
apply, thus allowing cookies to be attached. A possible
mitigation for this particular issue could be to disable the
functionality of triggering requests from within PDFium.
However, this behavior is not unique to PDFium, and
other browser extensions may also be exploited in order
to send arbitrary third-party requests that bypass imposed
cookie policies. As such, we propose that browsers strip
cookies from all requests initiated by extensions as a de-
fault policy. As this may interfere with the operations of
certain extensions, exclusions should be made possible,
for instance by defining a list of cookie-enabled domains
in the extension manifest.

Next to blocking third-party cookies, we also analyzed
the built-in tracking protection for Firefox. Interestingly,
we found that for each category of mechanisms that may
trigger requests, excluding JavaScript in PDFs, there ex-
ists at least one technique that can bypass the built-in
tracking protection. A manual analysis of the Firefox
source code showed that these bypasses are caused by
the retroactive manner in which tracking protection is
implemented. More specifically, although the request-
validation mechanism is applied in a central location, the
validation process is only triggered when a specific flag
is set, which requires modifications to every functional-
ity that may trigger requests. While Mozilla is already
aware12 of some of the bypasses we uncovered and is
working to mitigate these, we believe that our framework
will assist in identifying bypass techniques, even when
these are difficult to detect from the millions of lines of
code.

12https://bugzilla.mozilla.org/show_bug.cgi?id=

1207775

https://bugzilla.mozilla.org/show_bug.cgi?id=1207775
https://bugzilla.mozilla.org/show_bug.cgi?id=1207775

6.2 Browser extensions
For anti-tracking extensions and ad blockers, it is cru-
cial that all requests can be intercepted and blocked or
altered. From the results, summarized in Table 2 and Ta-
ble 3, it is clear that in the current state this is not the
case. In fact, we found that for every analyzed browser
extension there exists at least one technique that can be
used to circumvent the extension to send an authenticated
third-party request. Moreover, we found that the results
of the evaluated browser extensions are very disparate,
even for extensions that target the same browser. For in-
stance, out of the 15 ad blocking extensions for Google
Chrome, at most 3 exhibited a similar behavior.

In part, the disparity of results can be explained by
the frequent introduction of new features to browsers,
which may affect the WebExtension API or cause un-
foreseen effects. For instance, support for intercepting
WebSockets in browser exceptions was only added years
after the feature became available, and after it had ac-
tively been exploited to circumvent ad blockers [11].
Furthermore, AppCache caused one of the parameters
of the onBeforeRequest API to exhibit a different be-
havior, which was unexpected by most browser exten-
sions. As a result, requests triggered by AppCache man-
aged to bypass the vast majority of browser extensions.
The same change was introduced to Chromium-based
browsers when Service Workers were implemented. As a
result, most extensions for Chrome and Opera can be cir-
cumvented by triggering requests from Service Workers,
whereas all extensions Firefox successfully block these
third-party requests. This shows that adding new fea-
tures to a browser may have unforeseen side-effects on
the extensions that rely on the provided APIs.

When new browser features are proposed and imple-
mented, test cases that include the new functionality can
be added to our framework, allowing browser vendors
and extension developers to automatically detect and
possibly mitigate unforeseen side-effects. Moreover, be-
cause all anti-tracking and ad blocking browser exten-
sions share a common core functionality (namely, inter-
cepting and altering or blocking requests), we propose
that all these extensions use a specifically purposed API
that is actively maintained. Driven by the high popular-
ity of these browser extensions, this API could be added
to the WebExtension API. Alternatively, this API could
be offered in the form of an extension module, which of
course needs to be maintained and requires all browser
extensions to update this module.

7 Related Work
Policy implementation inconsistencies Multiple
studies have shown that browser implementations often
exhibit inconsistencies concerning security or privacy

policies. Aggarwal et al. [3] discovered privacy viola-
tions for private browsing implementations of modern
browsers through both manual and automatic analysis.
On top of that, they showed that browser extensions
and plug-ins can invalidate the privacy guarantees of
private browsing. Schwenk et al. [41] implemented
a web application that automatically evaluates the
SOP implementation of browsers. In that regard, they
showed that browser behaviors differ due to the lack of
a formal specification. Singh et al. [43] pointed out the
incoherencies in web browser access control policies.
In an effort to help browser vendors find the balance
between keeping incoherency-confirming features and
the breakage of websites as a consequence of removing
them, they developed a measurement system. Jackson
and Barth [21], too, showed that newly shipped browser
features can undermine existing security policies. In
particular, they discuss features affected by origin
contamination and propose three approaches to prevent
vulnerabilities caused by the introduction of these
features. Zheng et al. [55] question the integrity of
cookies by revealing cookie injection vulnerabilities for
major sites like those of Google and Bank of America.
They showed that implementation inconsistencies in
browsers can aggravate these vulnerabilities.
Ad blocking circumventions Iqbal et al. [20] exam-
ined methods that are used to circumvent ad blocking in
the wild. They discuss the limitations of anti-adblock
filter lists and proposed a machine learning approach to
identify ad block bypasses. Storey at al. [45] also pro-
posed new approaches to ad blocking, countering the ex-
isting flaws of traditional ad blocking methods. Their
new techniques include recognition of ads trough the use
of visual elements, stealth ad blocking and signature-
based active ad blocking.
Trackers in the wild Roesner et al. [40] performed
an in-depth empirical investigation of third-party track-
ers. Based on the results of this investigation, they pro-
posed a classification for third-party trackers and devel-
oped a client-side application for detecting and classi-
fying trackers. A large-scale crawl was performed by
Englehardt and Narayanan [14] to gather insights about
tracking behaviors in the wild. They found that track-
ing protection tools such as Ghostery proved effective
for blocking undesirable third-parties, except for obscure
trackers.

8 Conclusion
In this work, we introduce a framework that is able
to perform an automated and comprehensive evalua-
tion of cross-site countermeasures and anti-tracking pol-
icy implementations. By evaluating 7 browsers and 46
browser extensions, we find that virtually every browser-
or extension-enforced policy can be bypassed. We traced

back the origin of these bypasses to a variety of different
causes. For instance, we found that same-site cookies
could still be attached to cross-site requests by levering
the prerendering functionality, which did not take these
policies correctly into account.

Furthermore, a design flaw in Chromium-based
browsers enabled a bypass for both the built-in third-
party cookie blocking option and tracking protection
provided by extensions. Through JavaScript embedded
in PDFs, which are rendered by a browser extension,
cookie-bearing POST requests can be sent to other do-
mains, regardless of the imposed policies. Additionally,
we discovered that not every implementation of the We-
bExtension API guarantees interception of every request.
This makes it impossible for extension developers to be
completely thorough in blocking or modifying undesir-
able requests.

Overall, we found that browser implementations ex-
hibited a highly inconsistent behavior with regard to en-
forcing policies on third-party requests, resulting in a
high number of bypasses. This demonstrates the need
for browsers, which continuously add new features, to
be thoroughly evaluated.

The results of this research suggest that policy imple-
mentations are prone to inconsistencies. That is why we
think that, as future research, the framework could be
extended to evaluate other policy implementations (e.g.
LocalStorage API [28], Content Security Policy [1]). In
addition to that, the evaluation of mobile browsers could
also be an interesting direction. This includes the mobile
counterparts of major browsers for iOS and Android, but
also mobile exclusives like Firefox Focus [36].

Acknowledgements

We would like to thank the reviewers for their insight-
ful comments. This research is partially funded by the
Research Fund KU Leuven.

References
[1] Content security policy level 3. W3C working draft, W3C, Sept.

2016. https://www.w3.org/TR/2016/WD-CSP3-20160913/.

[2] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,
NARAYANAN, A., AND DIAZ, C. The Web Never Forgets: Per-
sistent Tracking Mechanisms in the Wild. Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communica-
tions Security - CCS ’14 (2014), 674–689.

[3] AGGARWAL, G., BURSZTEIN, E., JACKSON, C., AND BONEH,
D. An analysis of private browsing modes in modern browsers. In
Proceedings of the 19th USENIX Conference on Security (Berke-
ley, CA, USA, 2010), USENIX Security’10, USENIX Associa-
tion, pp. 6–6.

[4] AYENSON, M., WAMBACH, D., SOLTANI, A., GOOD, N.,
AND HOOFNAGLE, C. Flash cookies and privacy II: Now with
HTML5 and ETag respawning.

[5] BARTH, A. HTTP State Management Mechanism. RFC 6265,
RFC Editor, April 2011.

[6] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust de-
fenses for cross-site request forgery. In Proceedings of the 15th
ACM Conference on Computer and Communications Security
(New York, NY, USA, 2008), CCS ’08, ACM, pp. 75–88.

[7] BLOG, M. Firefox now offers a more private browsing ex-
perience. https://blog.mozilla.org/blog/2015/11/

03/firefox-now-offers-a-more-private-browsing-

experience/, 2015.

[8] BLOG, M. S. Supporting same-site cookies in firefox
60. https://blog.mozilla.org/security/2018/04/24/

same-site-cookies-in-firefox-60/, 2018.

[9] BORTZ, A., AND BONEH, D. Exposing private information by
timing web applications. In Proceedings of the 16th International
Conference on World Wide Web (New York, NY, USA, 2007),
WWW ’07, ACM, pp. 621–628.

[10] BUGREPLAY. Pornhub bypasses ad blockers with
WebSockets. https://medium.com/thebugreport/

pornhub-bypasses-ad-blockers-with-websockets-

cedab35a8323, 2016.

[11] CHROMIUM. chrome.webRequest.onBeforeRequest doesn’t in-
tercept WebSocket requests. https://bugs.chromium.org/

p/chromium/issues/detail?id=129353, 2012.

[12] COMSCORE. The impact of cookie deletion on site-server and
ad-server metrics in Australia, January 2011.

[13] ECKERSLEY, P. How unique is your web browser? In Proceed-
ings of the 10th International Conference on Privacy Enhanc-
ing Technologies (Berlin, Heidelberg, 2010), PETS’10, Springer-
Verlag, pp. 1–18.

[14] ENGLEHARDT, S., AND NARAYANAN, A. Online tracking: A
1-million-site measurement and analysis. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (New York, NY, USA, 2016), CCS ’16, ACM,
pp. 1388–1401.

[15] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext trans-
fer protocol – http/1.1. RFC 2616, RFC Editor, June 1999.

[16] GELERNTER, N., AND HERZBERG, A. Cross-site search attacks.
In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (2015), ACM, pp. 1394–
1405.

[17] GITHUB. PDF.js. https://mozilla.github.io/pdf.js/.

[18] GOOGLE SOURCE. PDFium. https://pdfium.

googlesource.com/pdfium/.

[19] GRIGORIK, I., AND WEST, M. Reporting API. Tech. rep.,
November 2017.

[20] IQBAL, U., SHAFIQ, Z., AND QIAN, Z. The ad wars: Ret-
rospective measurement and analysis of anti-adblock filter lists.
pp. 171–183.

[21] JACKSON, C., AND BARTH, A. Beware of finer-grained origins.

[22] JANG, D., TATLOCK, Z., AND LERNER, S. Establishing browser
security guarantees through formal shim verification. In Pro-
ceedings of the 21st USENIX conference on Security symposium
(2012), USENIX Association, pp. 8–8.

[23] KONTAXIS, G., AND CHEW, M. Tracking Protection in Fire-
fox For Privacy and Performance. In IEEE Web 2.0 Security &
Privacy (2015).

[24] LEKIES, S., STOCK, B., WENTZEL, M., AND JOHNS, M. The
unexpected dangers of dynamic javascript. In 24th USENIX Secu-
rity Symposium (USENIX Security 15) (Washington, D.C., 2015),
USENIX Association, pp. 723–735.

https://blog.mozilla.org/blog/2015/11/03/firefox-now-offers-a-more-private-browsing-experience/
https://blog.mozilla.org/blog/2015/11/03/firefox-now-offers-a-more-private-browsing-experience/
https://blog.mozilla.org/blog/2015/11/03/firefox-now-offers-a-more-private-browsing-experience/
https://blog.mozilla.org/security/2018/04/24/same-site-cookies-in-firefox-60/
https://blog.mozilla.org/security/2018/04/24/same-site-cookies-in-firefox-60/
https://medium.com/thebugreport/pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323
https://medium.com/thebugreport/pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323
https://medium.com/thebugreport/pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
https://mozilla.github.io/pdf.js/
https://pdfium.googlesource.com/pdfium/
https://pdfium.googlesource.com/pdfium/

[25] LERNER, B. S., ELBERTY, L., POOLE, N., AND KRISHNA-
MURTHI, S. Verifying web browser extensions compliance with
private-browsing mode. In European Symposium on Research in
Computer Security (2013), Springer, pp. 57–74.

[26] MAYER, J. R., AND MITCHELL, J. C. Third-party web tracking:
Policy and technology. In 2012 IEEE Symposium on Security and
Privacy (May 2012), pp. 413–427.

[27] MICROSOFT. Platform status. https://developer.

microsoft.com/en-us/microsoft-edge/platform/

status/samesitecookies/, 2018.

[28] MOZILLA DEVELOPER NETWORK. LocalStorage.
https://developer.mozilla.org/en-US/docs/Web/

API/Storage/LocalStorage.

[29] MOZILLA DEVELOPER NETWORK. Beacon API.
https://developer.mozilla.org/en-US/docs/Web/

API/Beacon_API, 2017.

[30] MOZILLA DEVELOPER NETWORK. Fetch API.
https://developer.mozilla.org/en-US/docs/Web/

API/Fetch_API, 2017.

[31] MOZILLA DEVELOPER NETWORK. webRequest.
https://developer.mozilla.org/en-US/Add-

ons/WebExtensions/API/webRequest, 2017.

[32] MOZILLA DEVELOPER NETWORK. WebSocket.
https://developer.mozilla.org/en-US/docs/Web/

API/WebSocket, 2017.

[33] MOZILLA DEVELOPER NETWORK. XMLHttpRequest.
https://developer.mozilla.org/en-US/docs/Web/

API/XMLHttpRequest, 2017.

[34] MOZILLA DEVELOPER NETWORK. EventSource.
https://developer.mozilla.org/en-US/docs/Web/

API/EventSource, 2018.

[35] MOZILLA DEVELOPER NETWORK. Using the application
cache. https://developer.mozilla.org/en-US/docs/

Web/HTML/Using_the_application_cache, 2018.

[36] MOZILLA SUPPORT. Firefox Focus. https://support.

mozilla.org/en-US/products/focus-firefox.

[37] MOZILLA WIKI. https://wiki.mozilla.org/Security/

Safe_Browsing.

[38] NOTTINGHAM, M. Web linking. RFC 5988, RFC Editor, Octo-
ber 2010.

[39] PIETRASZAK, M. Browser extensions. Draft community group
report, W3C, July 2017. https://browserext.github.io/browserext/.

[40] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detect-
ing and defending against third-party tracking on the web. In
Proceedings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation (Berkeley, CA, USA, 2012),
NSDI’12, USENIX Association, pp. 12–12.

[41] SCHWENK, J., NIEMIETZ, M., AND MAINKA, C. Same-origin
policy: Evaluation in modern browsers. In 26th USENIX Secu-
rity Symposium (USENIX Security 17) (Vancouver, BC, 2017),
USENIX Association, pp. 713–727.

[42] SHARMA, R. Preventing cross-site attacks using same-site
cookies. https://blogs.dropbox.com/tech/2017/03/

preventing-cross-site-attacks-using-same-site-

cookies/, 2017.

[43] SINGH, K., MOSHCHUK, A., WANG, H. J., AND LEE, W. On
the incoherencies in web browser access control policies. In Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2010), SP ’10, IEEE Computer Society,
pp. 463–478.

[44] SOLTANI, A., CANTY, S., MAYO, Q., THOMAS, L., AND
HOOFNAGLE, C. J. Flash cookies and privacy. In AAAI spring
symposium: intelligent information privacy management (2010),
vol. 2010, pp. 158–163.

[45] STOREY, G., REISMAN, D., MAYER, J., AND NARAYANAN,
A. The future of ad blocking: An analytical framework and new
techniques.

[46] THE CHROMIUM PROJECTS. Chrome Prerendering.
https://www.chromium.org/developers/design-

documents/prerender, 2011.

[47] VAN GOETHEM, T., CHEN, P., NIKIFORAKIS, N., DESMET,
L., AND JOOSEN, W. Large-scale security analysis of the web:
Challenges and findings. In International Conference on Trust
and Trustworthy Computing (2014), Springer, pp. 110–126.

[48] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS, N. The
clock is still ticking: Timing attacks in the modern web. In ACM
Conference on Computer and Communications Security (2015).

[49] WEBKIT. Intelligent Tracking Prevention. https://webkit.

org/blog/7675/intelligent-tracking-prevention/.

[50] WEST, M. ’samesite’ cookie attribute. https://www.

chromestatus.com/feature/4672634709082112, 2017.

[51] WEST, M., AND GOODWIN, M. Same-site cookies. Internet-
Draft draft-ietf-httpbis-cookie-same-site-00, IETF Secretariat,
June 2016.

[52] YEN, T.-F., XIE, Y., YU, F., YU, R. P., AND ABADI, M. Host
fingerprinting and tracking on the web:privacy and security im-
plications. In The 19th Annual Network and Distributed System
Security Symposium (NDSS) 2012 (February 2012), Internet So-
ciety.

[53] YU, Z., MACBETH, S., MODI, K., AND PUJOL, J. M. Tracking
the trackers. In Proceedings of the 25th International Conference
on World Wide Web (Republic and Canton of Geneva, Switzer-
land, 2016), WWW ’16, International World Wide Web Confer-
ences Steering Committee, pp. 121–132.

[54] ZELLER, W. P., AND FELTEN, E. W. Cross-site request forg-
eries: Exploitation and prevention.

[55] ZHENG, X., JIANG, J., LIANG, J., DUAN, H., CHEN, S., WAN,
T., AND WEAVER, N. Cookies lack integrity: Real-world impli-
cations. In 24th USENIX Security Symposium (USENIX Security
15) (Washington, D.C., 2015), USENIX Association, pp. 707–
721.

Appendix

A Test compositions

In this section, we explicate the various test compositions
that we have integrated in our framework. These compo-
sitions are shown in Table 5, together with the illustrated
domains.

B Extension set population

In this section, we present the extension set popula-
tions. For the ad tracking protection extensions, these
are shown in Table 6 and for the ad blocking extensions
in Table 7. All extensions for Chrome, Opera and Fire-
fox were selected based on relevant search criteria and

https://developer.microsoft.com/en-us/microsoft-edge/platform/status/samesitecookies/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/samesitecookies/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/samesitecookies/
https://developer.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage
https://developer.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage
https://developer.mozilla.org/en-US/docs/Web/API/Beacon_API
https://developer.mozilla.org/en-US/docs/Web/API/Beacon_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://support.mozilla.org/en-US/products/focus-firefox
https://support.mozilla.org/en-US/products/focus-firefox
https://wiki.mozilla.org/Security/Safe_Browsing
https://wiki.mozilla.org/Security/Safe_Browsing
https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/
https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/
https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/
https://www.chromium.org/developers/design-documents/prerender
https://www.chromium.org/developers/design-documents/prerender
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://www.chromestatus.com/feature/4672634709082112
https://www.chromestatus.com/feature/4672634709082112

ID Test composition

1 −−−−→
includes

2 −−−−→
includes

 −−−−→
includes

3 −−−−→
includes

 −−−−→
includes

4 −−−−→
includes

 −−−−→
includes

5 −−−−→
includes

 −−−−→
includes

 −−−−→
includes

6 file:// −−−−→
includes

7 −−−−→
includes

∗

8 −−−−→
includes

 −−−−→
includes

 −−−−→
includes

 −−−−→
includes

∗ Iframe constructed through data:text/html.

Table 5: Test compositions supported by our framework.

a minimum number of users or downloads (whichever
was available). Due to the unavailability of both num-
bers for Edge extensions, we selected Edge extensions
based on the popularity of their counterparts for the other
browsers. The extension “AdBlocker Lite” takes up two
entries in Table 2 and 7 because we tested its two modes.

C Bug reports and responses

In this section, we address the bug reports that we filed
and their subsequent responses. Bugs were reported
to both browsers (Section C.1) and extensions (Sec-
tion C.2). In order to not inspire any attackers or trackers,
we decided to only file private bug reports. Note that bug
threads mights still be private when visiting the associ-
ated link.

C.1 Built-in browser protection
[bug1] The bug that can be leveraged to bypass
Chrome’s and Opera’s third-party cookie policy has been
confirmed and is scheduled to be fixed at the time of writ-
ing. 13

[bug2] We reported that Safari 10 does not block all
third-party cookies when this option is enabled. At the
time of writing, this bug has not yet been confirmed.14

[bug3] The bug that nullifies Edge’s option to block
third-party cookies has been confirmed.15

13https://bugs.chromium.org/p/chromium/issues/

detail?id=836746
14https://bugs.webkit.org/show_bug.cgi?id=186589
15https://developer.microsoft.com/en-us/microsoft-

edge/platform/issues/16512847

[bug4] The bypasses for Opera’s ad blocker have been
reported, however, we were not given access to the bug
thread. Instead, we were given an email address through
which we can inquire about the process.

[bug5] In the bug thread that we have started for by-
passes concerning Firefox’ tracking protection, refer-
ences have been made to previously reported similar
bugs that are related to Firefox’ Safe Browsing fea-
ture [37].16 For example, the AppCache API had al-
ready been reported to bypass the URL classifier used
by Safe Browsing to signal websites known for phishing
or malware. Although the bug has not yet been officially
flagged as confirmed at the time of writing, there was an
intention to fix.

C.2 Extensions
[bug6] This bug permitted cross-site requests, initiated
by JavaScript embedded in a PDF, to bypass the WebEx-
tension API in Chromium-based browsers. This made
it impossible for extensions (e.g. ad blockers and anti-
tracking extensions) to implement a thorough third-party
cookie and request policy. Unfortunately, our bug thread
was closed as WontFix,17 because this functionality was
working as intended; requests initiated by an extension
(PDFium) shouldn’t be interceptable by other extensions.
Thread responses showed reluctance to treating PDFium
differently because it would be costly and difficult to im-
plement. We mentioned that Opera - a Chromium-based
browser - actually managed to mitigate these requests

16https://bugzilla.mozilla.org/show_bug.cgi?id=

1447935
17https://bugs.chromium.org/p/chromium/issues/

detail?id=824705

https://bugs.chromium.org/p/chromium/issues/detail?id=836746
https://bugs.chromium.org/p/chromium/issues/detail?id=836746
https://bugs.webkit.org/show_bug.cgi?id=186589
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/16512847
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/16512847
https://bugzilla.mozilla.org/show_bug.cgi?id=1447935
https://bugzilla.mozilla.org/show_bug.cgi?id=1447935
https://bugs.chromium.org/p/chromium/issues/detail?id=824705
https://bugs.chromium.org/p/chromium/issues/detail?id=824705

Set Extension name Version Number of users/downloads

Chrome Tracking Protection Extensions

SET B1 Blur 7.7.2390 248,825 users
SET B2 ScriptSafe 1.0.9.1 286,512 users
SET B3 Ghostery 7.4.1.4 2,787,473 users

Privacy Badger 2017.11.20 711,102 users
Disconnect 5.18.23 918,877 users

SET B4 uMatrix 1.1.12 121,618 users

Opera Tracking Protection Extensions

SET B5 Blur: Protect your passwords, payments & privacy 7.7.2393 154,817 downloads
SET B6 Disconnect 5.17.5 564,628 downloads

Privacy Badger 2017.11.20 140,381 downloads
SET B7 Ghostery 7.4.3.1 4,865,900 downloads

Firefox Tracking Protection Extensions

SET B8 DuckDuckGo Plus∗ 2017.11.30 419,351 users
SET B9 Privacy Badger 2017.11.20 411,406 users
SET B10 Ghostery Privacy Ad Blocker 7.4.1.4 1,048,907 users
SET B11 Cliqz - Schnellsuche und Trackingschutz 2.21.3 94,361 users

Edge Tracking Protection Extensions

SET B12 Ghostery 7.5.0.0 N/A
∗ Recently changed its name to “DuckDuckGo Privacy Essentials”.

Table 6: Population of the tracking protection extension sets.

with its built-in ad blocker, but also proposed an alter-
native solution like providing a setting to block execu-
tion of JavaScript embedded in PDFs. Response to our
proposition was supportive, however we are not aware
of any progress on the matter. In the same bug report,
we also explained the difficulties for extensions to dis-
tinct between requests initiated through the AppCache
or ServiceWorker API, and requests initiated by browser
functionality. However, no responses have been made in
regard to this.

[bug7] We reported that requests for fetching the favi-
cons are not interceptable through Firefox’ WebExten-
sion API and that requests initiated through the App-
Cache API are not easily distinguishable in Firefox. The
bug thread was closed as WontFix,18 because the first is-
sue had already been reported and no additional effort
will be made to fix the deprecated AppCache API.

[bug8] In addition to the aforementioned bugs caused
through the AppCache and WebSocket API, we identi-
fied a wide variety of bugs inherent to the implementa-
tion of ad blocking and privacy protection extensions.

18https://bugzilla.mozilla.org/show_bug.cgi?id=

1447933

Because of the large number of affected extensions,
many without a dedicated bug tracker, we only contacted
a selection of them. This selection involved the 11 most
popular and recently updated extensions, most of them
supported by multiple browsers, to which we reached out
through a private channel. Unfortunately, only 5 exten-
sion developers responded, of which only 2 pro-actively
tried and succeeded to fix the issue.

C.3 Same-site cookie
[bug9] The prerender bug that we found in Chrome
and Opera has been filed through the Chromium project,
where it was confirmed and scheduled to be fixed.19

[bug10] We have reported the several bypasses that we
found for Edge’s implementation of the same-site cookie
policy. This bug report has been confirmed.20

19https://bugs.chromium.org/p/chromium/issues/

detail?id=709946
20https://developer.microsoft.com/en-us/microsoft-

edge/platform/issues/18054323/

https://bugzilla.mozilla.org/show_bug.cgi?id=1447933
https://bugzilla.mozilla.org/show_bug.cgi?id=1447933
https://bugs.chromium.org/p/chromium/issues/detail?id=709946
https://bugs.chromium.org/p/chromium/issues/detail?id=709946
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/18054323/
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/18054323/

Set Extension name Version Number of users/downloads

Chrome Ad Blocking Extensions

SET A1 AdRemover for Google Chrome 1.1.1.0 9,463,986 users
Windscribe - Free VPN and Ad Blocker 2.3.4 553,466 users
uBlock 0.9.5.0 519,056 users

SET A2 AdBlocker Ultimate 2.26 628,321 users
Ads Killer 0.99.70 2,262,911 users
Hola ad blocker 1.21.624 143,790 users

SET A3 Fair AdBlocker 1.404 1,808,682 users
SET A4 AdGuard AdBlocker 2.7.2 4,650,713 users
SET A5 AdBlock Pro 4.3 2,134,631 users
SET A6 uBlock Adblocker Plus 2.3 332,645 users

uBlock Origin 1.14.22 10,000,000+ users
uBlock Plus Adblocker 1.5.2 521,915 users

SET A7 AdBlock 3.22.1 10,000,000+ users
Adblock Plus 1.13.4 10,000,000+ users

Opera Ad Blocking Extensions

SET A8 AdBlocker Lite (Lite mode) 0.4.0 164,309 downloads
AdBlock 2.57 11,199,416 downloads

SET A9 AdBlocker Ultimate 2.23 1,209,271 downloads
SET A10 Adblock Fast 1.2.0 465,483 downloads

AdBlocker Lite (Full mode) 0.4.0 164,309 downloads
SET A11 Adguard 2.7.2 5,649,827 downloads
SET A12 ContentBlockHelper 10.2.0 371,330 downloads
SET A13 uBlock origin 1.14.16 3,738,666 downloads
SET A14 Adblock Plus 1.13.4 33,802,382 downloads

Firefox Ad Blocking Extensions

SET A15 AdBlock for Firefox 3.8.0 865,131 users
AdBlocker Ultimate 2.28 448,458 users

SET A16 Adguard AdBlocker 2.7.3 299,462 users
SET A17 uBlock Origin 1.14.18 5,216,321 users
SET A18 Adblock Plus 3.0.1 13,574,386 users

Edge Ad Blocking Extensions

SET A19 AdBlock 2.4.0.0 N/A
SET A20 Adblock Plus 0.9.9.0 N/A
SET A21 Adguard Adblocker 2.8.4 N/A
SET A22 uBlock origin 1.14.24 N/A

Table 7: Population of the ad blocking extension sets.

	Introduction
	Background
	Cross-site attacks
	Third-party tracking

	Framework
	Framework design
	Browser manipulation
	Test environment

	Test-case generation
	Request-initiating mechanisms
	Test compositions

	Supported browser instances
	Web browsers
	Browser settings
	Browser extensions

	Results
	Web browsers and built-in protection
	Default settings
	Third-party cookie blocking
	Built-in protection mechanisms

	Browser Extensions
	Same-site cookie

	Real-world Abuse
	Use of bypass methods
	Evaluating unknown techniques

	Discussion
	Browser implementations
	Browser extensions

	Related Work
	Conclusion
	Test compositions
	Extension set population
	Bug reports and responses
	Built-in browser protection
	Extensions
	Same-site cookie

